a2 United States Patent

US009405683B2

(10) Patent No.: US 9,405,683 B2

Park et al. (45) Date of Patent: Aug. 2, 2016
(54) PROCESSOR AND MEMORY CONTROL (52) U.S.CL
METHOD FOR ALLOCATING CPC ..o GO6F 12/08 (2013.01); GO6F 12/0871

(735)

(73)

")

@

(22)

(65)

(63)

(30)

INSTRUCTIONS TO A CACHE AND A
SCRATCH PAD MEMORY

Inventors:

Assignees:

Notice:

Appl. No.:

Filed:

I1 Hyun Park, Yongin-si (KR); Soojung
Ryu, Cheonan-si (KR); Dong-Hoon Yoo,
Seoul (KR); Dong Kwan Suh,
Uiwang-si (KR); Jeongwook Kim,
Seongnam-si (KR); Choon Ki Jang,
Seoul (KR)

Samsung Electronics Co., Ltd.,
Suwon-si (KR); Seoul National
University Industry Foundation, Seoul
(KR)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 253 days.

13/045,752

Mar. 11, 2011

Prior Publication Data

US 2011/0219193 Al Sep. 8, 2011

Related U.S. Application Data

Continuation-in-part of application No. 12/048,658,
filed on Mar. 14, 2008, now Pat. No. 9,015,451.

Foreign Application Priority Data

Nov. 6, 2007

(1)

Int. Cl1.

(KR) e 10-2007-0112852

GO6F 15/00 (2006.01)

GO6F 7/38
GO6F 9/00
GO6F 9/44
GO6F 12/08
GO6F 9/50

(2013.01); GO6F 9/5016 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,603,050 A * 2/1997 Wolfordetal. 710/1
5,845321 A * 12/1998 Itoetal. 711/118
5,966,734 A * 10/1999 Mohamed etal. .. . 7117173
2001/0037432 Al* 11/2001 Hottaetal. 7117129
2004/0103410 Al* 5/2004 Sakaicccoiviviennnn 717/146

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 09-223068 8/1997
Jp 2007-257408 10/2007
(Continued)
OTHER PUBLICATIONS

Yoaz et al. (Speculation Techniques for Improving Load Related
Instruction Scheduling, May 1999, pp. 42-53).*

Li et al. (Memory Coloring: A Compiler Approach for Scratchpad
Memory Management, Sep. 2005, pp. 329-338).*

Primary Examiner — George Giroux
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

A processor and a memory management method are pro-
vided. The processor includes a processor core, a cache which
transceives data to/from the processor core via a single port,
and stores the data accessed by the processor core, and a

(2006.01)
(2006.01)
(2006.01)
(2016.01)

Scratch Pad Memory (SPM) which transceives the data
to/from the processor core via at least one of a plurality of
multi ports.

(2006.01)

21 Claims, 9 Drawing Sheets

100

110

PROCESSOR
CORE

L} scrATCH PAD
MEMORY

130

fJ

120

{,/

[l CACHE

US 9,405,683 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS KR 10-2000-0052418 8/2000
KR 10-2004-0054936 6/2004

2006/0152983 Al 7/2006 Johnson et al. . .
2007/0157178 Al* 7/2007 Koganetal. ..o, 717/130 * cited by examiner

U.S. Patent Aug. 2, 2016 Sheet 1 of 9 US 9,405,683 B2

FIG. 1

100
110 130

= =

L[| SCRATCH PAD
MEMORY

PROCESSOR [
CORE
120
[

///

I -] CACHE

US 9,405,683 B2

Sheet 2 of 9

Aug. 2, 2016

U.S. Patent

(

0rc

(

1194

!

(AN)K|

(

0¢¢

(

01¢

MMMMMM

U.S. Patent Aug. 2, 2016 Sheet 4 of 9 US 9,405,683 B2

FIG. 4

[MUO] [MU1] [MU2] [MU3] [MUO] [MU1] [MU2] [MU3]

Y Y Y YT 7 Y i

Conf | [DO | [DI] [D2][D3]! Conf |[D0]|

by b™MQ | !0 ID-cache]
MU0] [MU1] [MU2] [MU3]

Conf DI i

-1 ID-cache|
MU0 [MUT] [MU2] [MU3]

Conf |[D2]!

-2 D-cache]
MU0] [MU1] [MUZ] [MU3]

Conl [D3 i

13 ID-cache]
[MUO] [MU1] [MU2] [MU3] [MUO | [MU1] [MU2] [MU3]
ot | OB ot [e
| . bMmo 20 Dcachell DMQ |
MU0] [MU1] [MU2] [MU3]

Conf ii

1 D-cache)
[MUO] [MU1] [MU2] [MU3]

Conf ii

#2 D-cache]

(a) All in the DMQ (b) {D4} in the DMQ

U.S. Patent Aug. 2, 2016

(1,L00y
7 (1,100) (1,1

(a) All in the DMQ

Sheet 5 of 9 US 9,405,683 B2

(1,100)

— (13100)
(5100)

(2)

(b) {D4} in the DMQ

U.S. Patent Aug. 2, 2016 Sheet 6 of 9 US 9,405,683 B2

FIG. 6

(START)

Y

ANALYZE CHARACTERISTIC OF AT LEAST
ONE OF LOAD INSTRUCTION AND STORE [~ 610
INSTRUCTION

Y

ALLOCATE AT LEAST ONE OF LOAD

INSTRUCTION AND STORE INSTRUCTION | g2

TO ANY ONE OF SINGLE PORT CACHE
AND MULTI-PORT SPM

Y

PROCESS AT LEAST ONE OF ALLOCATED
LOAD INSTRUCTION AND ALLOCATED —~ 630
STORE INSTRUCTION

END

U.S. Patent Aug. 2, 2016 Sheet 7 of 9 US 9,405,683 B2
FI1G. 7
630
620
710
LOAD INSTRUCTION NO
AND STORE INSTRUCTION
ALLOCATED TO
MULTI-PORT
750
720
fj Y /

ASSIGN TIME STAMP VALUE TO AT PROCESS AT LEAST ONE
LEAST ONE OF ALLOCATED LOAD OF LOAD INSTRUCTION

INSTRUCTION AND ALLOCATED
STORE INSTRUCTION

AND STORE INSTRUCTION
IN SINGLE PORT CACHE

y

REDUCE, BY ONE, TIME STAMP
VALUE FOR EACH CLOCK CYCLE

L 730 END

A

OUTPUT PROCESSING RESULT OF AT
LEAST ONE OF LOAD INSTRUCTION
AND STORE INSTRUCTION WHEN
TIME STAMP VALUE IS 0

END

US 9,405,683 B2

Sheet 8 of 9

Aug. 2, 2016

U.S. Patent

ANH

098

0S8 7|

08

WdS LIOd-TL TN NI NOLLDNdLSNI
HIOLS ANV NOLLONMLSNI
avoT40 INO LSVAT LY SSdD0¥d

!

NOLLIDMNYLSNI H4OLS ANV
NOILDALSNI AVOT 40 INO LSVH']
LV ‘IdS LIOd-1LLTINN OL "AQIV A IO

!

NOLLOMYLSNI HIOLS ANV
NOLLDNYLSNIAVOT AO ANO LSVHT
LV OL H(1'TVA dINV.LS HINILL NDISSV

HHOVD LdOd A TONIS NI
NOLLOOYLSNI H40.LS ANV NOILIY.LSNI
dvOT140 dNO LSVYHT LV SSHO0dd

Omw\\

ANH ANV SSd3dav

T

LAVLS NHHM LAY AHANTINI
NOILLD(TELSNI HJOLS ddLVDOTIV

NV NOILDMAISNI AVOTdHLYIOOTIV
O HNO LSVAT.LV OL
ONIANOISHIIOD
SSHIAAV

ON

0c8

HHOVD
LdO0d HTONIS OL
A4LYOOTIV NOILDTYLSNI HIOLS

ON ANV NOLLONALSNI AVO'T
d0 IANO LSVH']

LV SI

)
o
\O|

019

8 OIA

U.S. Patent Aug. 2, 2016 Sheet 9 of 9 US 9,405,683 B2
FIG. 9
620
910
1S ALLOCATION NO
POSSIBLE WHILE
COMPILING?
930
920
/ Y /
ALLOCATE AT LEAST ONE OF ALLOCATE AT LEAST ONE
LOAD INSTRUCTION AND STORE OF LOAD INSTRUCTION

INSTRUCTION TO ANY ONE OF
SINGLE PORT CACHE AND
MULTI-PORT SPM

AND STORE INSTRUCTION
TO SINGLE PORT CACHE

Y

PERFORM RESCHEDULING OF AT LEAST
ONE OF LOAD INSTRUCTION AND STORE
INSTRUCTION BASED ON LATENCY

'

630

US 9,405,683 B2

1

PROCESSOR AND MEMORY CONTROL
METHOD FOR ALLOCATING
INSTRUCTIONS TO A CACHE AND A
SCRATCH PAD MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit under 35 U.S.C. §119
(a) of a Korean Patent Application No. 10-2007-0112852,
filed on Nov. 6, 2007, in the Korean Intellectual Property
Office, and claims the benefit as a continuation-in-part appli-
cation under 35 U.S.C. §120 of U.S. patent application Ser.
No. 12/048,658, filed on Mar. 14, 2008 now U.S. Pat. No.
9,015,451, in the United States Patent and Trademark Office,
the entire disclosures of which are incorporated herein by
reference.

BACKGROUND

1. Field

The following description relates to a memory configuring
a computer, and more particularly, to a memory that may
temporarily store data based on a calculation of a processor
core.

2. Related Art

A cache memory is provided to more efficiently use
memory in a computer system. Typically, it is a memory
which is located between a processor core and a main
memory, operates more quickly than the main memory, and is
smaller than the main memory.

Because data accessed by the processor core generally has
a good possibility of being accessed again in the near future,
the data accessed by the processor core may be stored in the
cache memory and may be quickly accessed when an access
request occurs again.

For example, when the data requested by the processor
core is stored in the cache memory, the processor core may
quickly access the data requested from the cache memory
instead of the main memory, thereby reducing an operation
time.

As another example, when the data requested by the pro-
cessor core is not stored in the cache memory, the processor
core may need to access the data requested from the main
memory instead of the cache memory, and a time required for
this process may be longer than a time required for accessing
the data from the cache memory.

As described above, a case in which the data requested by
the processor core is stored in the cache memory denotes that
a cache hit occurs, and a case in which the data requested by
the processor core is not stored in the cache memory denotes
that a cache miss occurs.

A Scratch Pad Memory (SPM) may be used as a memory
device that is combined with the processor core and that
stores data.

The SPM may exclude an additional circuit for determin-
ing either a hit or a miss, different from that of the cache
memory, and is controlled by legacy software for correct
operation of the SPM.

Selection, configuration, and use of at least one of a cache
and the SPM may be different according to a processor archi-
tecture.

Accordingly, there is a need for a processor architecture
including a cache and a SPM, enabling more efficient opera-
tion of the cache and the SPM, and a memory control method.

SUMMARY

In one general aspect, there is provided a processor includ-
ing a processor core, a cache which transceives data to/from

10

15

20

25

30

35

40

45

50

55

60

65

2

the processor core via a single port, and stores the data
accessed by the processor core, and a Scratch Pad Memory
(SPM) which transceives the data to/from the processor core
via at least one of a plurality of multi ports.

An instruction executed in the processor core may be allo-
cated to one of the cache and the SPM, and the instruction
may comprise at least one of a load instruction and a store
instruction.

The processor core may partition accessed data based on
the instruction, allocate a portion of the partitioned data to the
SPM, and allocate a portion of the remaining partitioned data
to the cache.

The processor core may partition the accessed data based
on profiling information, a data interference graph, and a size
of the SPM.

When it is undetermined during compiling which memory
ofthe cache and the SPM the at least one load instruction and
the store instruction executed in the processor core is to be
allocated to, the at least one of the load instruction and the
store instruction executed in the processor core may be allo-
cated to the cache.

A latency value may be determined based on which of the
cache and the SPM each of the load instruction and the store
instruction executed in the processor core is allocated to, and
each of the allocated load instruction and the allocated store
instruction may be scheduled based on the determined
latency value.

The SPM may assign a time stamp value to each of the load
instruction and the store instruction allocated to the SPM, and
reduce, by one, the time stamp value for each clock cycle.

The cache may select any one of the load instruction and
the store instruction to be forwarded to the SPM based on an
address indicated by each of the load instruction and the store
instruction allocated to the cache, assign a time stamp value to
each of the selected load instruction and the selected store
instruction, and forward, to the SPM, each of the load instruc-
tion and the store instruction to which the time stamp value is
assigned.

A latency of the cache may be less than a latency of the
SPM.

The SPM may comprise an input queue memory which
stores, using a First In First Output (FIFO) scheme, at least
one of a load instruction and a store instruction requested by
the processor core; and an output buffer which outputs a
processing result of each of the load instruction and the store
instruction processed by the SPM based on a latency of each
of the processed load instruction and the processed store
instruction.

The output buffer may output the processing result accord-
ing to a sequence in which a time stamp value of each of the
processed load instruction and the processed store instruction
is 0.

When a time stamp value of each of the requested load
instruction and the requested store instruction is predicted to
be 0 while processing each of the requested load instruction
and the requested store instruction, the SPM may transmit a
stall order to the processor core.

In another aspect, there is provided a memory control
method of a processor including a processor core, a single
port cache, and a multi-port SPM, the method including ana-
lyzing a characteristic of at least one of a load instruction and
a store instruction executed in the processor core, allocating
the at least one of the load instruction and the store instruction
to any one of the single port cache and the multi-port SPM
based on the analyzed characteristic, and processing the at
least one of the allocated load instruction and the allocated
store instruction.

US 9,405,683 B2

3

The processing may comprise assigning a time stamp value
to the at least one of the allocated load instruction and the
allocated store instruction when the at least one of the load
instruction and the store instruction is allocated to the multi-
port SPM, reducing, by one, the time stamp value for each
clock cycle, and outputting a processing result of the at least
one of the load instruction and the store instruction when the
time stamp value is 0.

The processing may comprise selecting any one of the load
instruction and the store instruction to be forwarded to the
multi-port SPM based on an address corresponding to the at
least one of the allocated load instruction and the allocated
store instruction, and assigning a time stamp value to either
the selected load instruction or the selected store instruction.

The selecting may comprise setting a start address and an
end address of the single port cache, and determining whether
to forward, to the multi-port SPM, the at least one of the
allocated load instruction and the allocated store instruction
by comparing the address corresponding to the at least one of
the allocated load instruction and the allocated store instruc-
tion with the start address and the end address.

The multi-port SPM may include an output buffer and an
input queue memory of an FIFO scheme, and the processing
may comprise storing, in the input queue memory, the at least
one of the allocated load instruction and the allocated store
instruction according to a scheduling-determined sequence,
processing the at least one of the load instruction and the store
instruction that is first stored in the input queue memory,
storing, in the output buffer, a processing result value of the at
least one of the processed load instruction and the processed
store instruction, and outputting the processing result value
stored in the output buffer when a time stamp value of the at
least one of the processed load instruction and the processed
store instruction is O.

The processing of the at least one of the allocated load
instruction and the allocated store instruction may further
comprise transmitting a stall order to the processor core when
a time stamp value of the at least one of the first-stored load
instruction and the first-stored store instruction is predicted to
be 0 while an operation of processing the at least one of the
load instruction and the store instruction being first stored in
the input queue memory is performed.

When it is undetermined during compiling which memory
of'the cache and the SPM the at least one load instruction and
the store instruction is allocated to, the allocating may allo-
cate the at least one of the load instruction and the store
instruction to the cache.

In another aspect, there is provided a computer-readable
storage medium having stored therein program instructions
for implementing a memory control method of a processor
including a processor core, a single port cache, and a multi-
port SPM, the method including analyzing a characteristic of
at least one of a load instruction and a store instruction
executed in the processor core, allocating the at least one of
the load instruction and the store instruction to any one of the
single port cache and the multi-port SPM based on the ana-
lyzed characteristic, and processing the at least one of the
allocated load instruction and the allocated store instruction.

Other features may be apparent from the following detailed
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating an example of a processor.
FIG. 2 is a diagram illustrating an example of a processor
core of FIG. 1.

35

40

45

55

4

FIG. 3 is a diagram illustrating an example of a Scratch Pad
Memory (SPM) of FIG. 1.

FIG. 4 is adiagram illustrating an example of a relationship
between partitioned data and a calculation unit.

FIG. 5 is a diagram is a diagram illustrating a data inter-
ference graph based on FIG. 4.

FIG. 6 is a flowchart illustrating a memory management
method of the processor.

FIG. 7 is a flowchart illustrating an example of operation
630 of FIG. 4.

FIG. 8 is a flowchart illustrating another example of opera-
tion 630 of FIG. 4.

FIG. 9 is a flowchart illustrating another example of a
memory management method of a processor.

Throughout the drawings and the detailed description,
unless otherwise described, the same drawing reference
numerals will be understood to refer to the same elements,
features, and structures. The relative size and depiction of
these elements may be exaggerated for clarity, illustration,
and convenience.

DETAILED DESCRIPTION

The following detailed description is provided to assist the
reader in gaining a comprehensive understanding of the meth-
ods and apparatuses described herein. Accordingly, various
changes, modifications, and equivalents of the apparatuses
and methods described herein may be suggested to those of
ordinary skill in the art. Also, descriptions of well-known
functions and constructions may be omitted for increased
clarity and conciseness.

According to various aspects, there is provided a hardware
and/or software method and apparatus for efficiently operat-
ing a data memory of a hybrid form. According to various
aspects, suitable operation of the data memory of the hybrid
form may be performed with reduced complexity.

In order to increase an instruction processing speed of a
processor, a processor architecture may simultaneously pro-
cess a plurality of instructions in parallel. At least one of a
load instruction and a store instruction may be processed in
parallel in a parallel processor. Accordingly, the parallel pro-
cessor may include a plurality of units processing the at least
one of the load instruction and the store instruction, and a
memory apparatus may include a plurality of ports for pro-
cessing a plurality of load instructions and/or a plurality of
store instructions in parallel.

According to various aspects, there is provided a processor
and a memory which efficiently process data via a combina-
tion of a multi-port memory and a single port memory.

A cache memory may be utilized for efficiently using a
memory in a computer. The cache memory may be located
between a processor core and a main memory, may operate
more quickly than the main memory, and may be smaller than
the main memory.

The data accessed by the processor core generally has a
strong possibility of being accessed again soon. Accordingly,
the data accessed by the processor core may be stored in the
cache memory and may be quickly accessed when an access
request occurs again.

In this example, when the data requested by the processor
core is stored in the cache memory, the processor core may
quickly access the data requested from the cache memory
instead of the main memory, thereby reducing an operation
time.

The cache memory may include a tag memory storing a
portion of an address on the main memory of the stored data.

US 9,405,683 B2

5

Because the cache memory has a complex configuration in
ahardware aspect, the cache memory may be inappropriate as
the multi-port memory. Also, because a policy of eviction
may not be easily determined when a cache miss is generated
in a specific port, the cache memory may be inappropriate as
the multi-port memory. Accordingly, a processor architecture
using a single port cache memory is proposed.

A Scratch Pad Memory (SPM) may be provided as well as
the cache memory as a memory architecture storing the data
processed by the processor. Because the SPM has a simple
hardware configuration, the SPM may be appropriate as the
multi-port memory. Because the SPM excludes an internal
control circuit and the like, control of the SPM may be per-
formed via software. The software may be used to determine
scheduling ofthe SPM, manage the SPM, and store data in the
SPM in order to store the data at runtime in the SPM.

Also, because a multi-port SPM may have architecture
more complex than a single port SPM, the multi-port SPM
may take a relatively longer time for processing the data.
Accordingly, a data latency of the multi-port SPM may be
high.

A high data latency may or may not be permitted based on
a type of instructions executed in the processor.

Also, the at least one of the load instruction and the store
instruction may not always need to be processed in parallel in
the parallel processor. Accordingly, a single port cache having
a low data latency may be more efficient than the multi-port
SPM having the high data latency based on a characteristic of
the at least one of the load instruction and the store instruc-
tion.

For suitably controlling the single port cache memory and
the multi-port SPM, there is provided a processor and a
memory system including the single port cache memory and
the multi-port SPM, and a memory management method.
Also, there is provided a method for enhancing system per-
formance by partitioning data accessed by a processor core
based on an instruction, and by allocating the partitioned data
to a cache or an SMP.

According to various aspects, there is provided a memory
management method for controlling each of the single port
cache memory and the multi-port SPM based on a latency of
each ofthe single port cache memory and the multi-port SPM.

FIG. 1 illustrates an example of a processor.

Referring to FIG. 1, processor 100 includes a processor
core 110, a cache 120, and an SPM 130.

The processor core 110 may process a plurality of instruc-
tions in parallel.

The cache 120 may transceiver data to/from the processor
core 110 via a single port, and store the data accessed by the
processor core 110.

The SPM 130 includes a plurality of multi ports, and may
transceiver the data to/from the processor core 110 via any
one of the plurality of multi ports.

At least one of a load instruction and a store instruction
executed in the processor core 110 is allocated to any one of
the cache 120 and the SPM 130.

For example, a compiler may allocate the at least one load
instruction and store instruction to any one of the cache 120
and the SPM 130. The compiler may analyze a characteristic
of'the at least one of the load instruction and the store instruc-
tion, and allocate the at least one of the load instruction and
the store instruction to any one of the cache 120 and the SPM
130 based on the analyzed characteristic.

The processor core 110 may partition accessed data based
on the load instruction or the store instruction.

20

35

40

45

50

55

65

6

For example, the processor core 110 may partition the
accessed data, and allocate a portion of the partitioned data to
the SPM 130, and a portion of remaining partitioned data to
the cache 120.

For example, the processor core 110 may profile a program
in order to obtain an execution count of each configuration
and a data closure of each of the load instruction and the store
instruction.

The processor core 110 may identify maximal data clo-
sures based on profiling information, and may generate a data
interference graph with respect to all the configurations.

A data closure with respect to an instruction is defined in a
set of data.

The processor core 110 may enlist all the combinations of
the maximal data closures, and may find a set of combinations
with a size less than or equal to a size N of the SPM 130.

Using the data interference graph, the processor core 110
may find, from all the combinations of the maximal data
closures, a combination that may minimally increase a sum of
execution counts of extra configurations, and may determine
a combination of remaining data closures and the found com-
bination.

The found combination that may minimally increase the
sum of executions counts of extra configurations may be
allocated to the SPM 130. The set of remaining data closures
in the set of combinations with the size less than or equal to
the size N of the SPM 130 may be allocated to the cache 120.

When it is undetermined during compiling which memory
ofthe cache 120 and the SPM 130 the at least one of the load
instruction and the store instruction executed in the processor
core 110 will be allocated to, the at least one of the load
instruction and the store instruction may be allocated to the
cache 120.

For example, if it is undetermined which memory the at
least one of the load instruction and the store instruction are to
be allocated to, the compiler may allocate the at least one of
the load instruction and the store instruction to the cache 120.

For example, the compiler may determine a latency value
of each of the allocated load instruction and the allocated
store instruction based on which of the cache 120 and the
SPM 130 each of the load instruction and the store instruction
is allocated to.

The cache 120 having a single port has a latency lower than
the SPM 130 having a multi port. For purposes of example, a
latency of the cache 120 may be one, and a latency ofthe SPM
130 may be four. In this example, the at least one of the load
instruction and the store instruction allocated to the cache 120
has the latency of one, and the at least one of the load instruc-
tion and the store instruction allocated to the SPM 130 has the
latency of four.

The compiler may determine scheduling of each of the
allocated load instruction and the allocated store instruction
based on the determined latency value.

The SPM 130 may assign a time stamp value to each of'the
load instruction and the store instruction allocated to the SPM
130, and may reduce, by one, the time stamp value for each
clock cycle.

The cache 120 may select any one of the load instruction
and the store instruction to be forwarded to the SPM 130
based on an address indicated by each of the load instruction
and the store instruction allocated to the cache 120. The cache
120 may assign a time stamp value to each of the selected load
instruction and the selected store instruction, and forward, to
the SPM 130, each of the load instruction and the store
instruction to which the time stamp value is assigned.

In this example, the cache 120 may compare the address
indicated by each of the load instruction and the store instruc-

US 9,405,683 B2

7
tion with a predetermined start address and a predetermined
end address. When the address indicated by each of the load
instruction and the store instruction is not included between
the start address and the end address, the cache 120 may
forward the at least one of the load instruction and the store
instruction to the SPM 130.

FIG. 2 illustrates an example of the processor core 110 of
FIG. 1.

Referring to FIG. 2, the processor core 110 includes four
calculation units 210, 220, 230, and 240.

Each of the calculation units 210, 220, 230, and 240 may
execute an instruction in parallel. Because the processor core
110 includes the four calculation units, the processor core 110
may execute four instructions in parallel.

The processor core 110 may execute four load instructions
or four store instructions, and the processor core 110 may use
four ports.

FIG. 3 illustrates an example of the SPM 130 of FIG. 1.

Referring to FIG. 3, the SPM 130 includes four memory
banks (0 through 3) 321, 322, 323, and 324. The memory
bank (0) 321 is connected with an input queue memory 311
and an output buffer 331.

The input queue memory 311 stores and outputs, using a
First In First Out (FIFO) scheme, at least one of a load
instruction and a store instruction requested by the processor
core 110.

The memory bank (0) 321 processes the at least one of the
load instruction and the store instruction received from the
input queue memory 311, and forwards a processing result to
the output buffer 331.

The output buffer 331 outputs the processing result of the at
least processed load instruction and the processed store
instruction. The output buffer 331 outputs the processing
result based on alatency of each of the processed load instruc-
tion and the processed store instruction.

The output buffer 331 outputs the processing result accord-
ing to a sequence in which a time stamp value of each of the
processed load instruction and the processed store instruction
is 0.

Similarly, the input queue memories 312, 313, and 314
store and output the at least one of the load instruction and the
store instruction requested by the processor core 110 using
the FIFO scheme.

The memory bank (1) 322 processes at least one load
instruction and the store instruction received from the input
queue memory 312, and forwards the processing result to the
output buffer 332. The memory bank (2) 323 processes at
least one load instruction and the store instruction received
from the input queue memory 313, and forwards a processing
result to the output buffer 333. The memory bank (3) 324
processes at least one load instruction and the store instruc-
tionreceived from the input queue memory 314, and forwards
a processing result to the output buffer 334.

When a time stamp value of each of the requested load
instruction and the requested store instruction is predicted to
be 0 while processing each of the requested load instruction
and the requested store instruction, the SPM 130 may trans-
mit a stall order to the processor core 110. For example, when
the processing result is not expected to reach the processor
core 110 until the time stamp value of each of the requested
load instruction and the requested store instruction is O while
the SPM 130 processes each of the requested load instruction
and the requested store instruction, the SPM 130 may trans-
mit the stall order to the processor core 110.

For example, when the time stamp value is 1 while each of
the load instruction and the store instruction is waiting in the

10

15

20

25

30

35

40

45

50

55

60

65

8

input queue memories 311, 312, 313, and 314, the SPM 130
may transmit the stall order to the processor core 110.

Also, when the time stamp value is 0 while each of the load
instruction and the store instruction is processed in the
memory banks (0 through 3) 321, 322, 323, and 324, the SPM
130 may transmit the stall order to the processor core 110.

The SPM 130 may transmit the stall order to the processor
core 110 based on the time stamp value of each of the load
instruction and the store instruction and an architecture of the
SPM 130.

In various aspects, a time for determining when the SPM
130 transmits the stall order may be a time when each of the
load instruction and the store instruction is located in the input
queue memories 311, 312, 313, and 314, or may be a time
when each of the load instruction and the store instruction is
processed in the memory banks (0 through 3) 321, 322, 323,
and 324, or may be a time when the output buffers 331, 332,
333, and 334 output the processing results.

When the processor core 110 receives the stall order, the
processor core 110 waits, stopping an operation until the
processing result of each of the load instruction and the store
instruction is received.

In various aspects, a number of memory banks may be
different from a number of ports. The number of memory
banks may be greater than or equal to the number of ports.

FIG. 4 illustrates an example of a relationship between
partitioned data and a calculation unit, and FIG. 5 illustrates
an example of a data interference graph based on FIG. 4.

As described above, the processor core 110 may partition
accessed data based on a characteristic, for example, a
latency, and the like, of a load instruction or a store instruc-
tion.

The processor core 110 may partition the accessed data
based on profiling information used for profiling of a pro-
gram, a data interference graph, a size of the SPM 130, and the
like.

A data closer and the SPM 130 of FIG. 4 may be defined as
follows:

Size of SPM: 10

Sizes of data closers: D0=10, D1=12, D2=5, D3=5, D4=10

A sum of sizes of data closers allocated to the SPM 130
may need to be within the size of the SPM 130.

According to the above definition, combinations of data
closures assignable to the SPM 130 may be determined as
follows.

Combinations of data closures: {D2, D3}, {D0}, {D4},
{D2}, {D3}

Arrow indicators may indicate relationships between cal-
culation units MU0, MU1, MU2, and MU3 and data closures
D0, D1, D2, D3, and D4.

A right diagram (b) of FIG. 4 shows an example of sched-
uling, to the SPM 130, only {D4} among the combinations of
the data closures.

As shown in FIG. 5, the processor core 110 may generate
the data interference graph with respect to all the configura-
tions of the program, and may determine all the combinations
of identified maximal data closures.

The processor core 110 may find a combination that may
minimally decrease a sum of execution counts of extra con-
figurations by finding a set of combinations with a size less
than the size N of the SPM 130 from the determined all the
combinations, and by decreasing a right diagram (b) of FIG.
5 and the data interference graph.

Accordingly, the processor 110 may allocate the data to at
least one of the cache 120 and the SPM 130 by partitioning the
data into the found combination that may minimally increase
the sum of execution counts of extra configuration, and a set

US 9,405,683 B2

9

of remaining data closures in the set of combinations with the
size less than the size N of the SPM 130.

FIG. 6 illustrates an example of a memory management
method of the processor 100 of FIG. 1.

Referring to FIG. 6, in 610, the memory management
method analyzes a characteristic of at least one of a load
instruction and a store instruction executed in the processor
core 110.

In 620, the memory management method allocates the at
least one of the load instruction and the store instruction to
any one of the cache 120 and the SPM 130 based on the
analyzed characteristic.

In 630, the memory management method processes the at
least one of the allocated load instruction and the allocated
store instruction.

The cache 120 is a single port memory, and the SPM 130 is
amulti-port memory. The cache 120 may have a latency lower
than a latency of the SPM 130. The memory management
method may determine the characteristic of the at least one of
the load instruction and the store instruction based on whether
a high latency is permitted.

The memory management method may classify the at least
one of the load instruction and the store instruction into at
least one of a quick load instruction and a quick store instruc-
tion based on the analyzed characteristic, and process the at
least one of the load instruction and the store instruction. The
memory management method may allocate the at least one of
the quick load instruction and the quick store instruction to
the cache 120.

When the characteristic of the at least one of the load
instruction and the store instruction may not be analyzed, the
memory management method may temporarily classify the at
least one of the load instruction and the store instruction into
the at least one of the quick load instruction and the quick
store instruction.

For example, the memory management method may use a
pointer analysis scheme to analyze the characteristic of the at
least one of the load instruction and the store instruction. The
pointer analysis scheme is a scheme of analyzing the charac-
teristic of each of the load instruction and the store instruction
by tracking a pointer of each of the load instruction and the
store instruction and tracing an available path in advance.

FIG. 7 illustrates an example of operation 630 of FIG. 6.

Referring to FIG. 7, in 710, whether at least one of a load
instruction and a store instruction is allocated to the SPM 130
is determined.

In 720, a time stamp value is assigned to the at least one of
the allocated load instruction and the allocated store instruc-
tion when the at least one of the load instruction and the store
instruction is allocated to the SPM 130.

In 730, the assigned time stamp value is reduced, by one,
for each clock cycle.

In 740, a processing result of the at least one of the load
instruction and the store instruction is outputted when the
time stamp value is 0.

In 750, the at least one of the allocated load instruction and
the allocated store instruction is processed in the cache 120
when the at least one of the load instruction and the store
instruction is allocated to the cache 120.

FIG. 8 illustrates another example of operation 630 of FIG.
6.

Referring to FIG. 8, in 810, whether at least one of a load
instruction and a store instruction is allocated to the cache 120
is determined.

In 820, when the at least one of the load instruction and the
store instruction is allocated to the cache 120, whether an
address corresponding to the at least one of the allocated load

10

15

20

25

30

35

40

45

50

55

60

65

10

instruction and the allocated store instruction is included
between a start address and an end address is determined.

In 820, whether to forward, to the SPM 130, the at least one
of'the load instruction and the store instruction is determined
based on whether the address is included between the start
address and the end address.

In 820, the start address and the end address of the cache
120 may be set. For example, the start address and the end
address of the cache 120 may be set in advance.

In 830, when the address is included between the start
address and the end address, the at least one of the load
instruction and the store instruction is processed in the cache
120.

In 630, when the address is not included between the start
address and the end address, the at least one of the load
instruction and the store instruction may be determined to be
forwarded to the SPM 130.

In 840, when the address is not included between the start
address and the end address, a time stamp value is assigned to
the at least one of the load instruction and the store instruc-
tion.

In 850, the at least one of the load instruction and the store
instruction to which the time stamp value is assigned is for-
warded to the SPM 130.

After 850, or when it is determined that the at least one of
the load instruction and the store instruction is not allocated to
the cache 120 in 810, the at least one of the load instruction
and the store instruction forwarded to the SPM 130 is pro-
cessed in the SPM 130, in 860.

For example, in operation 630, the at least one of the
allocated load instruction and the allocated store instruction
may be stored in any one of the input queue memories 311,
312, 313, and 314 according to a scheduling-determined
sequence.

In operation 630, the at least one of the load instruction and
the store instruction first stored in the input queue memories
311, 312, 313, and 314 may be processed.

In operation 630, a processing result value of the at least
one of the processed load instruction and the processed store
instruction may be stored in any one ofthe output buffers 331,
332, 333, and 334.

In operation 630, the processing result value stored in the
output buffers 331, 332, 333, and 334 may be outputted when
a time stamp value of the at least one of the processed load
instruction and the processed store instruction is 0.

In operation 630, a stall order may be transmitted to the
processor core 110 when a time stamp value of the at least one
of the first-stored load instruction and the first-stored store
instruction is predicted to be 0 while processing the at least
one of the first-stored load instruction and the first-stored
store instruction.

For example, in operation 630, the stall order may be
transmitted to the processor core 110 when the processing
result is expected not to reach the processor core 110 until the
time stamp value of each of the first-stored load instruction
and the first-stored store instruction is O while processing
each of the first-stored load instruction and the first-stored
store instruction.

For example, when the time stamp value is 1 while each of
the load instruction and the store instruction is waiting in the
input queue memories 311, 312, 313, and 314, the stall order
may be transmitted to the processor core 110 in operation
S630.

Also, when the time stamp value is 0 while each of the load
instruction and the store instruction is processed in the

US 9,405,683 B2

11

memory banks (0 through 3) 321, 322, 323, and 324, the stall
order may be transmitted to the processor core 110 in opera-
tion S630.

In operation 630, the stall order may be transmitted to the
processor core 110 based on the time stamp value of each of
the load instruction and the store instruction and an architec-
ture of the SPM 130.

According to various aspects, a time for determining when
the stall order is transmitted in operation 630 may be a time
when each of the load instruction and the store instruction is
located in the input queue memories 311, 312, 313, and 314,
or may be a time when each of the load instruction and the
store instruction is processed in the memory banks (0 through
3) 321, 322, 323, and 324, or may be a time when the output
buffers 331, 332, 333, and 334 output the processing results.

When the processor core 110 receives the stall order, the
processor core 110 waits, stopping an operation until the
processing result of each of the load instruction and the store
instruction is received.

FIG. 9 illustrates another example of a memory manage-
ment method of the processor 100 of FIG. 1.

Referring to FIG. 9, in 910, the memory management
method determines whether allocation of at least one of'a load
instruction and a store instruction is possible while compiling
after performing operation 620.

In 920, when it is determined in 910 that allocation is
possible, the memory management method allocates the at
least one of the load instruction and the store instruction to
any one of the cache 120 and the SPM 130 based on an
allocation result of operation 620.

In 930, when it is determined in 910 that allocation is not
possible, the memory management method allocates the at
least one of the load instruction and the store instruction to the
cache 120.

In 940, the memory management method performs
rescheduling of the at least one of the allocated load instruc-
tion and the allocated store instruction based on a latency.

In this example, because a latency of the cache 120 is lower
than a latency of the SPM 130, the at least one of the load
instruction and the store instruction allocated to the cache 120
may be executed more quickly than the at least one of the load
instruction and the store instruction allocated to the SPM 130.

According to various aspects, there is provided a processor
architecture enabling correct operation in a memory system
including a cache and a Scratch Pad Memory (SPM).

According to various aspects, there is provided a processor
architecture including a hybrid memory appropriate for a
computer architecture in which processing of multiple load/
store operations is performed.

According to various aspects, there is provided a processor
including a processor core, a cache which transceives data
to/from the processor core via a single port, and stores the data
accessed by the processor core, and an SPM which trans-
ceives the data to/from the processor core via at least one of a
plurality of multi ports.

According to various aspects, there is provided a memory
control method of a processor including a processor core, a
single port cache, and a multi-port SPM. The method includes
analyzing a characteristic of at least one of a load instruction
and a store instruction executed in the processor core, allo-
cating the at least one of the load instruction and the store
instruction to any one of the single port cache and the multi-
port SPM based on the analyzed characteristic, and process-
ing the at least one of the allocated load instruction and the
allocated store instruction.

The processes, functions, methods, and/or software
described herein may be recorded, stored, or fixed in one or

20

25

30

40

45

50

55

65

12

more computer-readable storage media including program
instructions to be implemented by a computer to cause a
processor to execute or perform the program instructions. The
media may also include, alone or in combination with the
program instructions, data files, data structures, and the like.
The media and program instructions may be those specially
designed and constructed, or they may be of the kind well-
known and available to those having skill in the computer
software arts. Examples of computer-readable storage media
include magnetic media such as hard disks, floppy disks, and
magnetic tape; optical media such as CD ROM disks and
DVD; magneto-optical media such as optical disks; and hard-
ware devices that are specially configured to store and per-
form program instructions, such as read-only memory
(ROM), random access memory (RAM), flash memory, and
the like. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher level code that may be executed by the
computer using an interpreter. The described hardware
devices may be configured to act as one or more software
modules that are recorded, stored, or fixed in one or more
computer-readable storage media, in order to perform the
methods and operations described herein, or vice-versa. In
addition, a computer-readable storage medium may be dis-
tributed among computer systems connected through a net-
work and computer-readable codes or program instructions
may be stored and executed in a decentralized manner.

A number of examples have been described above. Never-
theless, it should be understood that various modifications
may be made. For example, suitable results may be achieved
if the described techniques are performed in a different order
and/or if components in a described system, architecture,
device, or circuit are combined in a different manner and/or
replaced or supplemented by other components or their
equivalents. Accordingly, other implementations are within
the scope of the following claims.

What is claimed is:

1. A processor comprising:

a processor core for processing an instruction;

a cache configured to transceive data to/from the processor
core via a single port, and store data accessed by the
processor core; and

a Scratch Pad Memory (SPM) configured to transceive data
to/from the processor core via at least one port from
among a plurality of ports,

wherein an instruction executed in the processor core is
allocated to one of the cache and the SPM, and the
instruction comprises at least one of a load instruction
and a store instruction,

wherein the processor core profiles a program to obtain an
execution count of each configuration of the load
instruction and the store instruction, and a data closure
of the load instruction and the store instruction;

wherein the processor core searches for, from among all
combinations of maximal data closures of each of the
load instructions and the store instructions, a combina-
tion that increases a sum of execution counts of extra
configurations,

wherein the processor core further determines a combina-
tion of remaining data closures and the found combina-
tion, allocates the found combination to the SPM, and
allocates the set of remaining data closures to the cache,
and

wherein the processor core partitions the accessed data
based on profiling information, a data interference
graph, and a size of the SPM.

US 9,405,683 B2

13

2. The processor of claim 1, wherein the processor core
partitions accessed data based on the instruction, allocates a
portion of the partitioned data to the SPM, and allocates a
portion of the remaining partitioned data to the cache.

3. The processor of claim 1, wherein, in response to it being
undetermined during compiling which memory of the cache
and the SPM the instruction executed in the processor core is
to be allocated to, the instruction is allocated to the cache.

4. The processor of claim 1, wherein a latency value is

determined based on which of the cache and the SPM the 1

instruction executed in the processor core is allocated to, and
the allocated instruction is scheduled based on the deter-
mined latency value.

5. The processor of claim 1, wherein the SPM assigns a
time stamp value to an instruction allocated to the SPM, and
reduces, by one, the time stamp value for each clock cycle.

6. The processor of claim 1, wherein the cache selects an
instruction to be forwarded to the SPM based on an address
indicated by an instruction allocated to the cache,

assigns a time stamp value to the selected instruction, and

forwards, to the SPM, the selected instruction to which the

time stamp value is assigned.

7. The processor of claim 1, wherein a latency of the cache
is less than a latency of the SPM.

8. The processor of claim 1, wherein the SPM comprises:

an input queue memory which stores, using a First In First

Output (FIFO) scheme, an instruction requested by the
processor core; and

an output buffer which outputs a processing result of the

instruction processed by the SPM based on a latency of
the processed instruction.
9. The processor of claim 8, wherein the output buffer
outputs the processing result according to a sequence, in
response to a time stamp value of the processed instruction
being 0.
10. The processor of claim 8, wherein, in response to a time
stamp value of the requested instruction being predicted to
being 0 while processing the requested instruction, the SPM
transmits a stall order to the processor core.
11. The processor of claim 1, wherein the profiling infor-
mation comprises a relationship between a plurality of calcu-
lation units of the processor core mapped to a plurality of data
closures of the program.
12. The processor of claim 1, wherein the data interference
graph s based on the execution count of each configuration of
the load instruction and the store instruction, and the data
closure of each of the load instruction and the store instruc-
tion.
13. The processor of claim 1, further comprising a compiler
configured for allocating the load instruction and the store
instruction to the cache in response to a determination that the
load instruction and the store instruction is not allocated.
14. A memory control method of a processor including a
processor core, a single port cache, and a multi-port Scratch
Pad Memory (SPM), the method comprising:
analyzing a characteristic of an instruction executed in the
processor core, the instruction comprising at least one of
a load instruction and a store instruction;

allocating the instruction to one of the single port cache and
the multi-port SPM based on the analyzed characteristic;
and

processing the allocated instruction,

wherein the processing comprises:

profiling a program to obtain an execution count of each

configuration of the load instruction and the store
instruction, and a data closure of each of the load instruc-
tion and the store instruction, searching for, from among

15

20

35

40

45

55

14

all combinations of maximal data closures of each of the
load instructions and the store instructions, a combina-
tion that increases a sum of execution counts of extra
configurations, determining a combination of remaining
data closures and the found combination, allocating the
found combination to the SPM, and allocating the set of
remaining data closures to the cache, and

wherein the processor core partitions accessed data based

on the characteristic such that the characteristic includes
profiling information, a data interference graph, and a
size of the SPM.

15. The method of claim 14, wherein the processing com-
prises:

assigning a time stamp value to the allocated instruction in

response to the instruction being allocated to the multi-
port SPM;

reducing, by one, the time stamp value for each clock

cycle; and

outputting a processing result of the instruction in response

to the time stamp value being 0.

16. The method of claim 14, wherein the processing com-
prises:

selecting an instruction to be forwarded from the single

port cache to the multi-port SPM based on an address of
the allocated instruction; and

assigning a time stamp value to the selected instruction.

17. The method of claim 16, wherein the selecting com-
prises:

setting a start address and an end address of the single port

cache; and

determining whether to forward, to the multi-port SPM, the

allocated instruction by comparing the address corre-
sponding to the allocated instruction with the start
address and the end address.

18. The method of claim 14, wherein the multi-port SPM
includes an output buffer and an input queue memory of a
FIFO scheme, and

the processing comprises:

storing, in the input queue memory, the allocated instruc-

tion according to a scheduling-determined sequence;
processing the instruction that is first stored in the input
queue memory;

storing, in the output buffer, a processing result value of the

processed instruction; and

outputting the processing result value stored in the output

buffer in response to a time stamp value of the processed
instruction being 0.

19. The method of claim 18, wherein the processing the
allocated instruction further comprises:

transmitting a stall order to the processor core in response

to a time stamp value of'the first-stored instruction being
predicted to be 0 while an operation of processing the
first-stored instruction in the input queue memory is
performed.

20. The method of claim 14, wherein, in response to it
being undetermined during compiling which memory of the
cache and the SPM the instruction is to be allocated to, the
allocating allocates the instruction to the cache.

21. A non-transitory computer-readable storage medium
having stored therein program instructions for implementing
a memory control method of a processor including a proces-
sor core, a single port cache, and a multi-port Scratch Pad
Memory (SPM), the method comprising:

analyzing a characteristic of at least one instruction

executed in the processor core;

US 9,405,683 B2

15

allocating the at least one instruction to any one of the
single port cache and the multi-port SPM based on the
analyzed characteristic; and

processing the at least one of the allocated load instruction
and the allocated store instruction,

wherein the processing comprises:

profiling a program to obtain an execution count of each
configuration of the load instruction and the store
instruction, and a data closure of each of the load instruc-
tion and the store instruction, searching for, from among
all combinations of maximal data closures of each of the
load instructions and the store instructions, a combina-
tion that increases a sum of execution counts of extra
configurations, determining a combination of remaining
data closures and the found combination, allocating the
found combination to the SPM, and allocating the set of
remaining data closures to the cache, and

wherein the processor core partitions accessed data based
on the characteristic such that the characteristic includes
profiling information, a data interference graph, and a
size of the SPM.

10

15

20

16

